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Abstract

Strain gage thermal output (apparent strain) is one of the
largest sources of error associated with the measurement of
strain when temperatures vary.  In this paper, thermal output of
WK-type strain gages is experimentally determined for
temperatures ranging from -450¡F to 230¡F.  The gages are
installed on both metal specimens and composite laminates of
various lay-ups and resin systems. Metal specimens tested
include: aluminum-lithium alloy (Al-Li 2195-T87), aluminum
alloy (Al 2219-T87), and titanium alloy.  Composite materials
tested include: graphite toughened-epoxy (IM7/977-2), graphite-
bismaleimide (IM7/5260), and graphite-thermoplastic
(IM7/K3B).  For the composite materials thermal output in both
the 0¡ fiber direction and the 90¡ fiber direction is measured.
The experimentally determined thermal output data are curve fit
with a fourth-order polynomial for each of the materials studied.
The thermal output data and the polynomials that are fit to the
data are compared with those produced by the strain gage
manufacturer, and the results and comparisons are presented.
Unacceptably high errors in the manufacturerÕs data are
observed at temperatures below -270¡F.

Background

The X-33 (see Figure 1) is a half scale
Reusable Launch Vehicle (RLV) prototype
rocket, based on the Single Stage to Orbit (SSTO)
concept, whose project goal is to provide industry
with a cost effective vehicle for the next
generation of space flight [1].  The success and
reusability of future launch systems depend
heavily on the reusability of the cryogenic fuel
tanks.  Space Shuttle (a current space
transportation system) cryogenic tanks are
designed for only one flight that lasts
approximately eight minutes, making the launch
process costly and wasteful.

In order to build a viable RLV, a reusable
cryogenic fuel tank must be produced, and the
validation of the durability of this cryogenic tank
system, which includes the cryogenic insulation,
tank structure, and adhesives, requires testing at
cryogenic temperatures.  This requirement has
prompted the NASA Langley Research Center
(LaRC) to develop cryogenic thermal-mechanical

Figure 1. X-33 vehicle.

tests capable of simulating the flight-cycle
thermal and mechanical loads for various
cryogenic tank concepts.  In some of these tests, a
series of 1-ft. by 2-ft. rectangular panels are tested
to determine their durability while subjected to
the thermal and mechanical loads experienced by
a tank during flight [2].
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Figure 2.  1-Foot by 2-Foot panel placed in
the hydraulic load machine.

The cryogenic thermal-mechanical tests
developed at LaRC involve either a metallic or
composite sandwich structure (where the
sandwich core also serves as a cryogenic
insulation) or a metallic or composite stiffened
panel (with external cryogenic insulation).
Figures 2 and 3 are photographs of the front and
back views of one such test. Accurate
measurements of strain at temperatures ranging
from -423¡F to 230¡F are required during the
tests.  Because the electrical resistance of a strain
gage varies with both temperature and load, an
accurate correction of temperature-induced
thermal output is critical for determining the true
mechanical strain from strain gage measurements.

Nomenclature

         a = the coefficient of thermal 
expansion of the test material.

         ag = the coefficient of thermal 
expansion of the strain gage 
grid. 

         aR = coefficient of thermal expansion 
of the reference material used to 
compute the manufacturerÕs 
curves.

        DT = the temperature change from 
the reference temperature.

   (DR/R0)T/O = the relative resistance change 
      from the reference resistance.

        bG = the thermal coefficient of 
resistance of the gage.

        FG = the gage factor of the gage.

        Kt = the transverse sensitivity of the 
strain gage.

        n0 = PoissonÕs ratio of the standard 
test material used in calibrating 

the gage for its gage factor.

   eT/O = the thermal output (apparent 
strain) in strain units.  The 
magnitude of strain measured 
when the gage (mounted to a 
test material) is subjected to a 
temperature change.

    e1 = strain magnitude corrected for 
both thermal output and gage 
factor variation.

    e2  = indicated or measured strain.

eT / O ( T1 ) = thermal output at test 
temperature T1.

    F* = gage factor setting used while 
strain measurement is made.

      F(T1) = gage factor at test temperature.

         s = the stress in the test material.

         E = YoungÕs modulus of the 
test material.
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   eP = the thermal output predicted for 
a strain gage attached to a test 
material.

    eR = the thermal output for a 
reference material used to 
compute the manufacturerÕs 
curves.

        eT/O = experimentally determined 
thermal output in microstrain.

         T   = temperature in ¡F.

Strain Gage Thermal Output
(Apparent Strain)

 Temperature-induced thermal output (also
called apparent strain) is caused by two
algebraically additive components.  The first
component is the change in electrical resistivity of
the gage due to temperature change.  This
resistance change is independent of any
mechanically induced strain on the object to
which the gage is bonded.  The second component
of thermal output is the change in electrical
resistivity of the gage due to mechanical strain
produced by the difference in coefficients of
thermal expansion of the gage material and the
material to which the gage is mounted (and in
which we want to measure strain).

The cause of the second component is the aDT
or ÒfreeÓ thermal expansion of the material to
which the gage is bonded.  The change in
temperature (DT) causes an expansion or
contraction of the specimen.  Because the strain
gage is strongly attached to the surface of the
material and has a low stiffness, the gage is forced
to undergo the same expansion or contraction as
the material.  This strain of the gage will be
registered by an indicator as strain of the
specimen, even if no mechanical strain is induced
in the specimen.  Thus, in order to get an accurate
reading of the mechanical strain being placed on
the specimen in an environment in which the
temperature is changing, it is essential to correct
for thermal output due to changes in temperature.

Figure 3. Hydraulic load machine and
cryogenic chambers.

Further information about thermal output can
be found in reference [3], where equation (1a) is
derived. This equation shows how thermal output
is the algebraic sum of both components in that
the relative change in resistance of the gage is
given as:
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The thermal output is proportional to the
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following equation:
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One method of experimentally determining
thermal output is to take small material specimens
(having homogeneous properties), gage them in
exactly the same fashion as the test specimen
(which locally has the same properties) and then
subject these specimens to only thermal loads.
Raw strain data collected from this thermal
loading of the small specimens can then be
utilized to generate thermal output data and the
polynomial equations describing those data.
These polynomial equations can then be used to
determine the true mechanical strain to induce in
the test specimen and correct the measured strain
data.

In experiments where test specimens are
subjected to thermal loads, measured strain data
must be corrected for both thermal output and
gage factor variations with temperature [3]. The
thermal output is dependent on the test specimen
material and must be determined experimentally.
The gage factor varies linearly with temperature
and is not dependent on the test specimen material
so data provided by the gage manufacturer is
used. Provided that the gage factor and thermal
output at temperature are known for the material
being tested, Equation 2 below can be used to
correct the strain measurement for both thermal
output and gage factor variations with
temperature.
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        (2a)

The total strain is a combination of the
mechanical strain and the thermal strain and is as
follows:

e = e1 + aDT        (2b)

For uniaxial loads, the mechanical strain is:

e
E1 =
s

       (2c)

2 inches

 2 inches

Strain Gage

Thermocouple

0.125 inches

0.075 inches

Strain
Measurement
Axis

Figure 4.  Specimen layout, (dimensions
are approximate).

Test Specimens

For this study, values of thermal output were
measured for specimens of seven different
materials at temperatures ranging from
approximately -423 ûF to 230 ûF.  Those
specimens include both composite and metallic
materials.  The specimens were all instrumented
with one strain gage mounted in the center of each
specimen and one Type-T thermocouple placed to
one side of the strain gage as shown in Figure 4.
All composite specimens were gaged with WK-
00-250BG-350 strain gages, which have a gage
factor of 2.02 at 75¡F.  Three specimens of each
material had strain gages oriented along the

Figure 5. Graphite-K3B co-cured
specimens.
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Figure 6. Aluminum-lithium (Al-Li 2195-
T87) specimens.

0¡ fiber direction, and the other three specimens
of each material had strain gages oriented along
the 90¡ fiber direction.   This was done because
composite materials have different coefficients of
thermal expansion in orthogonal directions.

The aluminum alloy (Al 2219-T87) and the
aluminum lithium (Al-Li 2195-T87) specimens
were gaged with WK-13-250BG-350 strain gages
which have a gage factor of 2.08 at 75¡F, and the
titanium alloy specimens were gaged with WK-
06-250BG-350 gages which have a gage factor of
2.02 at 75¡F.  The strain gages were applied using
standard installation methods [5].

Six IM7/977-2 graphite toughened-epoxy
(GR/EP) and six IM7/5260 graphite-bismaleimide
(GR/BMI) specimens were tested. The lay-up of
the GR/EP and the GR/BMI specimens was
[±45/0/90/0]S  for all twelve of the specimens.

A total of twelve IM7/K3B graphite-
thermoplastic (GR/K3B) specimens (see Figure 5)
were tested, six of which had a [0/60/90/-60/0]S

lay-up and originated from a facesheet of a co-
cured titanium honeycomb sandwich panel which
had previously been tested within its elastic limit.
The other six specimens were fabricated from a
cured laminate with a [0/45/90/-45] S lay-up.
Three of each of the co-cured and consolidated
GR/K3B specimens were instrumented in the 0¡
fiber direction and the other three were
instrumented in the 90¡ fiber direction.

Three specimens of aluminum alloy (Al 2219-
T87) and three titanium alloy (Ti) specimens were
also instrumented and tested.  All of these
specimens were 2-in. by 2-in. square specimens
with a tolerance of approximately ±0.125 inches.

Three aluminum-lithium alloy (Al-Li 2195-
T87) specimens were tested.  They were only 1-
in. by 2-in. with the gages measuring strain in the
rolled direction (see Figure 6).  Although Al-Li is
an anisotropic material, the load is introduced in
the rolled direction in planned uniaxial tests, so
measurements of strain gage thermal output were
made in this direction only.

The 2-in. by 2-in. specimen size was picked to
avoid Òend effectsÓ in the strain measurements,
and since the gages measured strain in the rolled
direction, the 1-in. by 2-in. Al-Li specimens were
sufficient for measurement of thermal output data.

Figure 7.  Dewar used for tests with
spraybar and lid attached.
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Experimental Apparatus

Due to the extreme temperatures required for
this experiment, two different test apparatii were
required.  To obtain temperatures below -300¡F,
an insulated Dewar was used (see Figure 7).
Specimens were placed in a wire basket (see
Figure 8) and the basket was placed inside the
Dewar.  A spraybar was then inserted above the
wire basket that allowed either liquid nitrogen or
liquid helium to be admitted to the Dewar.  This
device setup allowed the measurement of strain
readings at -450¡F (liquid helium temperature) as
well as -320¡F (liquid nitrogen temperature).

In order to obtain test temperatures ranging
from -300¡F to 230¡F, a large, insulated, forced
convection chamber was used.  This chamber,
shown in Figure 9, was heated with resistive
elements and cooled with a circulating liquid
nitrogen sprayed ÒmistÓ. The circulation of the
liquid nitrogen mist helped assure uniform
thermal conditions and prevented the liquid from
directly contacting the specimens.  All of the
specimens were placed on a wire tray suspended
approximately 2 in. above the bottom of the
chamber to insure proper circulation around the
specimens for temperature uniformity.  Access
ports and gaps on the top and bottom of the forced
convection chamber were sealed to minimize
leakage.

For data acquisition, a Neff data acquisition
system (DAS) and the Autonet data acquisition
software were used; both of which are available
commercially.  A photograph of the system is
shown in Figure 10.

 The Neff DAS utilized Wheatstone bridge [6]
cards to measure strain (balanced to zero the
strain gage readings at room temperature), and
thermocouple cards to measure temperature. The
signals were received, processed, and displayed
on a computer using the Autonet software
package.

Figure 8. Wire basket used for Dewar tests.

Figure 9.  Convection chamber with
specimens on tray.
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Figure 10.  Neff/Autonet data acquisition
system.

Although the Type-T thermocouples attached to
the samples could be used to measure
temperatures down to -450¡F, the Autonet data
conversion tables were only programmed for
temperatures down to approximately -340¡F, and
when temperatures dropped below this value, the
values were marked Òout-of-rangeÓ.  For this
reason, two actions were taken: first, a millivolt
reading was taken from the thermocouples for
later data reduction and second, Type-E
thermocouples, capable of being processed by
Autonet to temperatures of   -450¡F, were used to
evaluate the temperature inside both the Dewar
and the convection chamber.  In the forced
convection chamber, these Type-E thermocouples
were placed in a diagonal pattern across the tray
that held the specimens.  For the Dewar tests, the
specimen basket was lined with three Type-E
thermocouples in a spiraling fashion with one at
the top, one in the middle, and one on the bottom.
These steps were taken to assess the temperatures
and temperature variations very near the

specimens as well as to provide a temperature
measurement for temperatures below -340¡F.

Experimental Procedure

Prior to a test, the strain gages and
thermocouples were connected to the DAS. The
strain gages were zeroed at room temperature by
balancing the Wheatstone bridges in the DAS
with a tolerance of ±5 microstrain.  The
thermocouple readings were then checked for
proper function.  The reference temperature at
which the gages are zeroed is 70¡F (room
temperature).

Chamber Tests

The specimens were placed on a wire tray in
the test chamber and the instrumentation wires
were taped to the tray to keep the specimens
stationary during the test (see Figure 11).

After the specimens were placed on the tray,
three Type-E thermocouples were positioned on
the wire tray with the thermocouple junctures
placed as close to the specimens as possible in
order to get an accurate reading of the ambient
temperature in the chamber at the level of the
specimens.

Figure 11.  Specimens on platform within
chamber.
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Aluminum tape and Cryoliteª insulation were
used to seal the perimeter of the closed chamber
(located at the juncture of the two doors), the
bundle of instrumentation wires exiting the test
chamber, and the access ports of the chamber.

The first step in the testing procedure was to
cool down the specimens to cryogenic
temperature.  In this chamber -300¡F was the
desired minimum temperature, but due to a
degraded blower motor, it proved very difficult to
hold this test temperature consistently so the
minimum test temperature was raised to -270¡F.
Once the measured temperatures reached the
desired test temperature of -270¡F, the specimens
soaked at temperature allowing them to reach a
steady-state condition (approximately 5 min.).  A
variance of up to 5¡F was allowed due to the
temperature control limitations of the forced
convection chamber.  Data was logged on the
computer for this 5-min. interval at a rate of 1
scan per second to insure minimal fluctuation and
a steady state condition.  After the 5-min. hold,
the data for the particular test temperature were
recorded in the logbook for each specimen.  Data
were taken at increments of 50¡F with readings
taken for test temperatures between -270¡F and
220¡F.  After obtaining data at all the test
temperatures, the specimens and gages were
allowed to return to room temperature, were
inspected for damage. The test was repeated two
more times, and then the specimens and gages
were again inspected for damage and repaired if
necessary. After this final inspection, the
specimens were removed and prepared for the
Dewar tests.

Dewar Tests

The next portion of the test involved placing
the specimens in a Dewar that was then cooled
with either liquid nitrogen or liquid helium.  The
specimens were removed from the convection
chamber and separated according to material type.
It was determined that the complete specimen set
could not fit into the Dewar, so the GR/EP
specimens, the GR/BMI specimens, the
aluminum-lithium specimens, and the aluminum
alloy specimens were tested together. The

remaining specimens (GR/K3B and Ti) were
tested separately.

The specimens were placed in the wire basket
shown in Figure 8 and inspected to insure they
could hang freely in the wire basket while making
minimal contact with one another.  The basket
was then prepared for the test by placing the three
Type-E thermocouples in the basket, and then the
basket was lowered into the Dewar.  The spraybar
was then placed inside the Dewar approximately 2
ft. above the specimens, and the lid was loosely
placed on top of the Dewar.  This was done to
avoid spraybar contact with the specimens and to
allow venting from the Dewar due to the
vaporization of the cryogen.  The nitrogen or
helium supply was then attached to the port on the
spraybar.

As with the tests in the chamber, the
specimens were cooled to the test temperature and
allowed to soak at that temperature for 5 min. as
data was logged by the computer.  After 5 min. a
strain reading was recorded in the logbook.  The
liquid nitrogen flow into the Dewar was manually
controlled and a test temperature of -315¡F was
achieved. The measurement using liquid helium
to cool the specimens followed the same
procedure and test temperatures of -454¡F were
achieved.  In order to obtain a statistically
significant sample of the data, all tests were
repeated two more times.

Experimental Results
and Analysis

The reduction of the data from this experiment
required an average of the thermal output for each
material type at each test temperature.  For
example, nine data values for thermal output,
obtained for the three 0û GR/EP specimens at a
given temperature from three separate tests were
averaged to produce one value of thermal output
for that material and material direction.  A 95%
confidence interval was calculated for each test
material at each test temperature using the
procedure outlined in Reference [7].  These
intervals ranged from ±0.5 microstrain (±1%) for
the AL-LI specimen at 230¡F to  ±321.1
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microstrain (±10%) for the GR/K3B cured
laminate at -421¡F, indicating little scatter in the
data.  Once the data were obtained for all desired
temperatures and averaged, a plot of the thermal
output vs. temperature was generated.  A
commercial spreadsheet package was used to fit a
fourth-order polynomial to the data points,
generating an equation for that curve.  A least
squares fit through the data is used to calculate
this curve.  A fourth order polynomial was used
because the manufacturer provides a fourth order
polynomial and it accurately captures the
variations in the data.

An initial comparison was made between the
experimental values of thermal output and those
values produced by the gage manufacturer.  The
manufacturerÕs data were obtained from gages
mounted to a titanium silicate reference material.
Because the reference material has a different
coefficient of thermal expansion than the
materials tested, the values of thermal output must
be corrected for differences in coefficients of
thermal expansion. Equation (3) illustrates the
equation suggested by the manufacturer [3] to
correct the thermal output:

    eR = eP + (a - a R)DT                      (3)

Figure 12 contains both the experimentally
determined thermal output and the corrected
manufacturerÕs data for the titanium alloy (Ti). In
this and subsequent plots of thermal output, the
gage factor is not corrected for temperature. As
shown in the Figure, the manufacturerÕs thermal
output curve (corrected using Eq. (3)) does not
closely approximate the experimental data
(differing by a maximum of -408 microstrain
(34.3%) at -409¡F).  For other materials the
corrected manufacturerÕs data were acceptable at
temperatures above -200¡F, but proved to be less
than satisfactory at cryogenic temperatures.  For
this reason it is preferable to directly determine
the thermal output of the gages on a test material
or specimen.  These data can then be subtracted
from the test data to determine true mechanical
strain using Eq. (2a)  [4].
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Figure 12. Thermal output for titanium
(experimental data and strain gage
manufacturerÕs data).

Figure 13 contains the thermal output data for
the aluminum and aluminum-lithium alloys. The
95% confidence intervals are also shown for these
and subsequent data as well as the fourth-order
polynomials that were fitted to the data. The
fourth order polynomial fitted to the data for this
material and those for subsequent materials are
given in Table 1.
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Figure 13. Thermal output data for Al and
AL-LI with a gage factor of 2.08.
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Figure 14. Thermal output data for GR/EP
with a gage factor of 2.02.

Figure 14 contains plots of the thermal output
data for the graphite-epoxy (IM7/977-2)
specimens with a [±45/0/90/0]S ply lay-up. Data
in both the 0¡ ply orientation direction and the 90¡
direction are given.

Figure 15 contains plots of the thermal output
data for the graphite-bismaleimide (IM7/5260)
specimens with a [±45/0/90/0]S ply lay-up.  Data
are given for both the 0¡ ply orientation direction
and the 90¡ direction.  Fourth-order polynomials
for both ply orientation directions were generated.

Thermal output data for the graphite-
thermoplastic (GR/K3B) specimens are given in
Figure 16.  Thermal output data for both the
specimens extracted from the facesheets of a co-
cured sandwich structure and those fabricated
from a cured laminate are given in both the 0¡ and
90¡ ply orientation direction.

Figure 17 contains the thermal output data in
the 0¡ ply direction for all of the materials tested.
The thermal output data for gages mounted on
metals differ greatly from those mounted on
composite materials, but variations among the
metals and composite materials were relatively
low.
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Figure 15. Thermal output for GR/BMI
specimens with a gage factor of 2.02.

For the metals, the largest variation in thermal
output occurs at -273¡F and is 281 microstrain.
For the composite materials in the 0¡ ply
direction, the maximum variation is 399
microstrain and occurs at -423¡F.

The 95% confidence intervals calculated for
the thermal output data gathered during the
chamber tests are relatively small and indicate a
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Figure 16. Thermal output data for
GR/K3B with a gage factor of 2.02.
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minimum of scatter in the data for all the
materials at test temperatures above -270¡F. For
the thermal output data gathered during the Dewar
tests, the 95% confidence intervals calculated
indicate a large scatter in the data at temperatures
below -270¡F for all the materials tested. This is
primarily due to the wider test temperature
variations observed in the Dewar test.

All the data collected are summarized in Table
1.  Listed are the fourth order polynomial
equations determined for each material, the
minimum and maximum temperature to which
each material was subjected, and the minimum
and maximum measured thermal output. The
maximum error between the manufacturerÕs
provided thermal output, corrected by equation
(3), and the experimental thermal output is also
given.  Note that this difference is the absolute
strain error that would result if the manufacturerÕs
thermal output data were used to correct for
thermal output, rather than the experimentally
determined thermal output data.
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Figure 17. Thermal output data in the 0¡
fiber direction for all materials tested.

Table 1. Summary of Thermal Output Data.

Material Temperature,

¡F

Strain,
mstrain

Fourth Order Model of Thermal Output, eT/O,
mstrain

Max
|D Error|,

Min. Max. Min. Max. mstrain (%)

Composites
GR/EP     00 -400 230 -3316 291  -211.42 + 3.9755T - 0.0112T2 + 7x10-6T3 + 3x10-8T4 1731 (52)

GR/EP    900 -406 230 -3023 241  -181.16 + 3.3991T - 0.0096T2 + 7x10-6T3 + 2x10-8T4 1461 (48)

GR/BMI   00 -403 230 -3169 263  -200.55 + 3.6989T - 0.0099T2 + 6x10-6T3 + 2x10-8T4 1593 (48)

GR/BMI  900 -397 230 -3001 227  -177.80 + 3.3392T - 0.0095T2 + 7x10-6T3 + 2x10-8T4 1446 (50)

Co-Cured
GR/K3B  00

-409 230 -2976 228  -167.67 + 3.2353T - 0.0103T2 + 9x10-6T3 + 3x10-8T4 1381 (46)

Co-Cured
GR/K3B 900

-430 230 -3210 260  -191.43 + 3.5523T - 0.0105T2 + 8x10-6T3 +3x10-8T4 1549 (43)

GR/K3B  00 -454 230 -3220 201  -165.95 + 3.4110T - 0.0113T2 + 8x10-6T3 + 4x10-8T4 1494 (46)

GR/K3B 900 -421 230 -3577 253  -192.23 + 4.1037T - 0.0111T2 + 3x10-6T3 + 2x10-8T4 1943 (54)

Metals
Al-Li
2195-T87

-411 230 -1408  80    -81.26 + 1.7143T - 0.0069T2 + 5x10-6T3 + 3x10-8T4 254 (43)

AL 2219-T87 -411 230 -1173  38    -55.31 + 1.4220T - 0.0077T2 + 6x10-6T3 + 4x10-8T4 504 (18)

Titanium -409 230 -1188  23     12.57 + 0.5643T - 0.0084T2 + 5x10-6T3 + 3x10-8T4 408 (34)
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Concluding Remarks

From the data gathered and the plots
produced, one can conclude that the testing
procedure produced very repeatable
experimental results.  Strain gage manufacturers
produce plots and equations for thermal output
as a function of temperature and also provide
gage factor variations with temperature for
gages mounted to a wide variety of standard
materials.  However, the manufacturerÕs
methodology to correct for nonstandard
materials was found to be inaccurate, especially
at cryogenic temperatures. For the materials,
lay-ups and temperatures of concern, the
absolute errors associated with using the thermal
output data provided by the strain gage
manufacturer are too high and so experimentally
determined thermal output data must be used.
The maximum variation in thermal output
among the composite materials is moderate, and
if data for a different material system is lacking,
any of the composite data presented here could
be used as a first approximation to the thermal
output.
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